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1. About

This is a set of lecture notes used in a course on model theory at Virginia
Commonwealth University (Math 591 - Topics: Logic and Mathematical
Structures), which I taught jointly with Sean Cox in the spring of 2014.

Most of the material contained in these notes can be found in the following
sources.

References:

• Chang and Keisler. Model Theory, Studies in Logic and the Foundations
of Mathematics, Volume 73, Third Ed., 1990, North Holland.

• Endertion. A Mathematical Introduction to Logic, Second Ed., 2001, Har-
court Academic Press.

• Rothmaler. Introduction to Model Theory Algebra, Logic and Applications
Series, Volume 15, First Ed., 2000, Gordon and Breach.

2. Introduction

In courses on first-order logic, one usually derives the compactness theo-
rem from Gödel’s completeness theorem, which says that every logical con-
sequence can be derived in a certain effective formal proof system. The
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compactness theorem then follows immediately from the finite character of
that proof system (“every formal proof is finite”). We will show that, in fact,
the finite character of logical consequence (i.e. the compactness theorem)
can be derived without any reference to formal systems or formal proof.
Along the way we will discuss the Axiom of Choice, filters, ultrafilters, ul-
traproducts, non-standard models of arithmetic, and  Loś theorem.

We will then give some applications of the compactness theorem. In
particular, we will show that the upward Löwenheim-Skolem theorem follows
quite easily from the compactness theorem. We will also discuss how all of
this leads to nonstandard models of arithmetic (i.e. structuresM satisfying
all the same sentences as the standard model (N, 0, 1,+, ·,≤) with N (
M which contain elements a ∈ M such that n ≤ a for all n ∈ N). The
notes conclude with a discussion of types, saturation of ultraproducts and a
simplified version of a famous theorem of Keisler and Shelah.

3. Background material on orderings

An ordering is a first-order structure of the form (P,≤) where P is a
set and ≤ is a binary relation that satisfies certain properties depending on
the type of ordering. A typical example of an ordering is the set of natural
numbers N with the usual ordering ≤N; for example, 0 ≤ 4, 17 ≤ 28, and
15 6≤ 8.

Let’s try to specify some of the important properties of (N,≤).

• (Totality) For any numbers n,m ∈ N, either n ≤ m or m ≤ n.
• (Antisymmetry) For any numbers n,m ∈ N, if n ≤ m and m ≤ n

then n = m.
• (Transitivity) For any numbers n,m, k ∈ N, if n ≤ m and m ≤ k

then n ≤ k.

These three properties define what we call a “linear order.”

Definition 1. A linear order is a structure of the form (I,≤) satisfying
the following three properties, for all a, b, c ∈ I.

(1) (Totality) a ≤ b or b ≤ a.
(2) (Antisymmetry) a ≤ b and b ≤ a implies a = b.
(3) (Transitivity) a ≤ b and b ≤ c implies a ≤ c.

Example 1. The following structures are linear orders: (N,≤), (Z,≤),
(Q,≤), and (R,≤).

Definition 2. A partial order is a structure of the form (P,≤) satisfying
the following three properties, for all a, b, c ∈ P .

(1) (Reflexivity) a ≤ a.
(2) (Antisymmetry) a ≤ b and b ≤ a implies a = b.
(3) (Transitivity) a ≤ b and b ≤ c implies a ≤ c.

Example 2. Let’s show that the collection of all subsets of N, written as
P (N), together with the subset ordering ‘⊆’ is a partial order but not a
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linear order. In other words, let us show that (P (N),⊆) is a partial order
but not a linear order. (Reflexive) If A ∈ P (N) then A ⊆ N and clearly
A ⊆ A. (Antisymmetric) Suppose A,B ∈ P (N). If A ⊆ B and B ⊆ A then
of course A = B. (Transitivity) Suppose A,B,C ∈ P (N). Then if A ⊆ B
and B ⊆ C then clearly A ⊆ C.

Why is (P (N),⊆) not a linear order? It must be because the totality
condition is not true in (P (N),⊆). We need to find two subsets A,B ⊆ N
such that bothA ⊆ B andB ⊆ A are false. Just takeA = {5} andB = {17}.
Then A 6⊆ B and B 6⊆ A, so the Totality condition fails. Indeed, any subset
A,B ⊆ N that are disjoint would work. This shows that (P(N),⊆) is not a
linear order.

Definition 3. If (P,≤) is a partial order and A ⊆ P is nonempty, then
a ∈ P is called the least element of A if a ∈ A and for all b ∈ A we have
a ≤ b.

An element a ∈ P is called the greatest element of A if a ∈ A and for
all b ∈ A we have b ≤ a.

Definition 4. We say that a linear order (I,≤) is a well-order if every
nonempty subset A ⊆ I has a least element. In other words, (I,≤) is a well-
order if it is a linear order and for every subset X ⊆ I there is an element
a ∈ X such that for all b ∈ X we have a ≤ b.
Example 3. Not every linear order is a well-order. Consider the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
with their standard order (Z,≤). Clearly Z has no least element, and so
(Z,≤) is not a well-order. Some other examples of linear orders that are not
well-orders: (Q,≤) and (R,≤).

Example 4. (Q,≤) is not a well-order because many of its subsets have no
least element. For example the set X = {. . . , 15 ,

1
4 ,

1
3 ,

1
2 , 1} is a subset of Q

with no least element. However, notice that the set X does have a “lower
bound” in (Q,≤), namely 0: for every natural number n > 0 we have 0 ≤ 1

n .

Similarly, the set X = {0, 12 ,
3
4 ,

4
5 ,

5
6 , . . .} has an “upper bound,” namely

1, but X has no greatest element.

Definition 5. Suppose (P,≤) is a partial order. We say that a ∈ P is a
lower bound of a set X ⊆ P if for every b ∈ X we have a ≤ b.

We say that a ∈ P is an upper bound of X ⊆ P if for every b ∈ X we
have b ≤ a.

Definition 6. Let (P,≤) be a partial order and suppose A ⊆ P is nonempty.
We say that a ∈ A is a minimal element of A if no elements of A are
“smaller” than a. In other words, a is a minimal element of A if for all
b ∈ A with b 6= a we have b 6≤ a.

We say that a ∈ A is a maximal element of A if no elements of A are
“larger” than a. In other words, a is a maximal element of A if for all b ∈ A
with b 6= a we have a 6≤ b.



4 BRENT CODY

Example 5. The set P (N) has a ⊆-least element.

Example 6. Consider the set

X0 = {{3}, {3, 5}, {3, 5, 12}, {3, 5, 12, 17}, {3, 5, 12, 17, 22}}.
The ⊆-least element of X0 is {3} because {3} is a subset of all the other
sets in X0. {3} is also a minimal element of X0 and a lower bound of X0.

Example 7. Let us now consider the collection

X1 = {{3}, {7}, {3, 5}, {7, 8}, {3, 5, 7, 8}}.
Now X1 does not have a ⊆-least element because none of the sets in X0 are
subsets of all the others. However, X1 does have a ⊆-minimal element—in
fact, it has two ⊆-minimal elements. {3} is a ⊆-minimal element because
for every other a ∈ X1 with a 6= {3}, we have a 6⊆ {3}. Similarly, {7} is a
⊆-minimal element of X1.

Is there a subset of N that is a lower bound of X1? Answer: yes. The
emptyset ∅ is a subset of N and ∅ is a subset of every set. So in particular,
for every a ∈ X1 we have ∅ ⊆ a.

Does X1 have a greatest element? Answer: yes. {3, 5, 7, 8} is the greatest
element of X1 because it contains all the others.

Example 8. Consider the set

X2 = {{1}, {2}, {1, 2}, {1, 2, 3}, {7}, {8}, {7, 8}}.
Notice that X2 does not have a ⊆-greatest element since none of the sets in
X2 contain all the others. However, X2 does have a ⊆-maximal element—
in fact, it has two maximal elements. Does X2 have an upper bound in
(P (N),⊆)?

Definition 7. Suppose (P,≤) is a partially ordered set. We call T ⊆ P a
chain if T is linearly ordered by ≤.

Example 9. Consider the structure (R,≤). Then Z ⊆ R is a chain. Does
the chain have an upper bound in (R,≤)?

Example 10. Consider the partial order (P (N),⊆). The following is a
chain:

{2} ⊆ {2, 4} ⊆ {2, 4, 6} ⊆ · · ·
This chain has a least element, but does not have a greatest element. The
chain does have an upper bound in (P (N),⊆).

Example 11. Is there a chain in (P (N),⊆) that has no least element?
Answer: Yes. For each n ∈ N let In = [n,∞) = {m ∈ N | n ≤ m} be the
standard interval from n to ∞. Then the collection {In | n ∈ N} has no
⊆-least element:

· · · I4 ⊆ I3 ⊆ I2 ⊆ I1 ⊆ I0 = N. (3.1)

The collection does have a lower bound in (P (N),⊆): the empty set is a
subset of every set.
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The Axiom of Choice.

If A is a nonempty set, then A has at least one element, then we can
always choose x ∈ A. Indeed, if A0, A1, . . . , An are finitely many nonempty
sets, then we can always choose x0 ∈ A0, x1 ∈ A1, . . ., xn ∈ An. In other
words, there is a function f such that f(Ai) = xi ∈ Ai for each i with
0 ≤ i ≤ n. But, what if we have an infinite set {A0, A1, A2, . . .} such that
for each n ∈ N the set An is nonempty. Is there a function f such that for
each i ∈ N we have f(Ai) ∈ Ai? It turns out that if we want to be able to
prove that such a function exists, we must use the Axiom of Choice.

The Axiom of Choice: If X is a set of nonempty sets then
there exists a function f with domain X such that for every
a ∈ X, f(a) ∈ a.

The Axiom of Choice is ‘independent’ from the other foundational axioms
of set theory ZF, meaning that set theory ZF cannot prove the Axiom of
Choice, nor can it prove the negation of the Axiom of Choice.

The Axiom of choice is equivalent to the well-ordering principle stated
below.

The Well-ordering Principle: Every set X can be well-
ordered. In other words, for every set X there is a well-order
≤ of X.

Well-orders (X,≤) have the property that given any element a ∈ X, which
is not the greatest element of X, there is a least element greater than a, or a
“next element after a.” The Well-ordering Principle (and hence the Axiom
of Choice because they are equivalent) implies that the set of real numbers
R can be well-ordered. However, there is no canonical way of defining a well-
order on R. Try to think about how you would do this. What is the least
element in the well-order? Let’s say the least element is 0. What should the
next element be? 1? π? 0.272727272 . . .?

Another important, and widely used equivalent formulation of the Ax-
iom of Choice is Zorn’s Lemma. We will use Zorn’s Lemma to show that
“ultrafilters” exist.

Proposition 1. The following are equivalent.

(1) The Axiom of Choice
(2) Zorn’s Lemma: If (P,≤) is a nonempty partially ordered set and

every chain T ⊆ P has an upper bound u ∈ P , then P contains a
maximal element.

Proof. I will only provide a proof sketch of (1) =⇒ (2). Let us assume (1)
and ¬ (2) and derive a contradiction. Since ¬ (2) holds, there is a partially
ordered set (P,≤) such that every chain T ⊆ P has an upper bound and yet
P has no maximal element.

First let us show that given any chain T ⊆ P , there is an element pT ∈ P
such that pT is strictly larger than every element of T . Suppose T ⊆ P is
a chain. Then, by our assumption about P , there is an upper bound u ∈ P
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of T . Since we are assuming that P has no maximal elements we conclude
that there is a pT ∈ P such that u < pT .

This shows that for each chain T ⊆ P the set

XT := {p ∈ P | ∀t ∈ T (t < p)}
is nonempty. Now let X := {XT | T ⊆ P is a chain} and notice that X is a
set of nonempty sets, and so the Axiom of Choice (1) implies that there is
a function f such that for every chain T ⊆ P we have f(XT ) ∈ XT . This
means for every chain T ⊆ P we have that f(XT ) ∈ P is greater than every
element of T .

One can now use this function f to define a chain in P :

p0 < p1 < p2 < · · ·
that gets longer and longer with no end. Eventually the chain will have a
“larger size” that P itself, and this is a contradiction.

�

4. Filters and Ultrafilters

Next I will introduce the notion of “filter,” which will provide a precise
way to say that certain sets are “big” and certain sets are “small.” Let us
first consider an example. What subsets of the natural numbers N should be
considered big? Well, since N is infinite, it seems natural to say that finite
subsets of N should not be big, and in fact, we will say that finite sets are
small. Should every infinite set be considered big? It will be useful to make
a distinction and declare that some infinite subsets of N are big while others
are small. For example, it may be useful to consider the set {2n | n ∈ N}
small while at the same time regarding the set {n | n > 67} to be big. There
are some rules that our definition of “bigness” should obey. For example if
A is a big set and A ⊆ B then B should be a big set.

Definition 8 (Filter). Let I be a set. A nonempty collection F of subsets
of I is called a filter (over I) if the following conditions hold true.

(1) ∅ /∈ F and I ∈ F .
(2) If A,B ∈ F , then A ∩B ∈ F .
(3) If A ∈ F and A ⊆ B ⊆ I, then B ∈ F .

The idea is that if F is a filter and A ∈ F , then A is considered to be big
(in the sense of F ).

Example 12 (Tail Filter). For each k ∈ N, let Ik = {n | n ≥ k} = [k,∞).
Let us show that the set F := {X ⊆ N | ∃k (Ik ⊆ X)} is a filter over N. We
just need to check the three requirements in the definition.

(1) Of course, ∅ /∈ F because ∅ does not contain any interval of the form
Ik = [k,∞). Clearly N ∈ F .

(2) If A,B ∈ F then there exists k,m ∈ N such that Ik ⊆ A and Im ⊆ B.
To see thatA∩B ∈ F we need to check thatA∩B contains an interval
of the form In. Let n = max(k,m). Then In = Ik ∩ Im ⊆ A ∩B.
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(3) Suppose A ∈ F and A ⊆ B ⊆ N. Since A ∈ F there is a k ∈ N such
that Ik ⊆ A ⊆ B. Hence B ∈ F .

Remark 1. Notice that the tail filter in Example 12 provides a good notion
of being “big.” Whereas the principle filter Fn = {A ⊆ N : n ∈ A}, where
n ∈ N, does not: the filter Fn tells us that {n} is big because {n} ∈ Fn, but
of course intuitively, the set {n} is not big because it has only one element!

Exercise 1 (Frechét filter). Suppose X is an infinite set. Show that the
following collection of subsets of X is a filter.

F = {A ⊆ X | X \A is finite}

Definition 9. Let I be a set. A collection E of subsets of I is said to have
the finite intersection property if E 6= ∅ and every intersection of finitely
many members of E is nonempty.

Exercise 2. Let I be a set. Show that every filter F over I has the finite
intersection property. (Hint: use induction.)

Exercise 3. Show that if E is a collection of subsets of some set I and E
has the finite intersection property, then there is a filter F ⊇ E extending
E. (Hint: Let F be the collection of all subsets A ⊆ I such that A contain
a finite intersection of elements of E.)

Definition 10. We say that U is an ultrafilter over a set I if U is a
nonempty collection of subsets of I such that the following properties hold.

(1) ∅ /∈ U and I ∈ U .
(2) If A,B ∈ U , then A ∩B ∈ U .
(3) If A ∈ U and A ⊆ B ⊆ I, then B ∈ U .
(4) For every X ⊆ I, either X ∈ U or I \X ∈ U .

Example 13 (Principle Filter). Suppose X is a set and p ∈ X. Then
Fp = {A ⊆ X : p ∈ A} is the principal ultrafilter over X generated by
p. Typically principal ultrafilters are not very interesting.

Lemma 1. Suppose F is a filter on I. The following are equivalent.

(i) F is a maximal filter in the sense that whenever F ′ ⊇ F is a filter
one has F ′ = F .

(ii) F is an ultrafilter.

Proof. (ii) =⇒ (i). This is quite easy. If F is an ultrafilter and F ′ ) F is
a filter extending F then there is a set A ∈ F ′ \ F . Since A /∈ F and F is
an ultrafilter, it follows by ultrafilter property (4) that I \A ∈ F . But then
∅ = A ∩ (I \A) ∈ F ′, a contradiction.

(i) =⇒ (ii). Suppose F is a maximal filter. For a contradiction, assume
that F is not an ultrafilter. Then there is a subset X0 ⊆ I such that X0 /∈ F
and I \X0 /∈ F . One can check that

F ′ := {X ⊆ I | X0 ⊆ X or there is a Y ∈ F such that Y ∩X0 ⊆ X}
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is a filter, which is a contradiction since F ( F ′. Let’s check that F ′ is a
filter.

(1) First notice that X0 6= ∅ because I \X0 /∈ F . Furthermore, if Y ∈ F
then Y ∩ X0 6= ∅ because if Y ∩ X0 = ∅ then Y ⊆ I \ X0 and this
would imply that I \X0 ∈ F (by filter property (3)). So, if X ∈ F ′
then either ∅ 6= X0 ⊆ X or there is a Y ∈ F with ∅ 6= Y ∩X0 ⊆ X;
in either case, X 6= ∅. It easily follows from the definition of F ′ that
I ∈ F ′.

(2) Suppose A,B ∈ F ′. By checking cases one can verify that A∩B ∈ F ′.
For example, if X0 ⊆ A and there is a Y ∈ F with Y ∩X0 ⊆ B then
Y ∩X0 ⊆ A ∩B and hence A ∩B ∈ F ′.

(3) Suppose A ∈ F ′ and A ⊆ B ⊆ I. Then either X0 ⊆ A ⊆ B or there
is a Y ∈ F with Y ∩X0 ⊆ A ⊆ B. In either case, B ∈ F ′.

�

Proposition 2. Every set with the finite intersection property can be ex-
tended to an ultrafilter.

Proof. Suppose E is a collection of subsets of a set I and that E has the
finite intersection property. Let F0 ⊇ E be the filter over I extending E ob-
tained as in Exercise 3 above. Let F = {F | F is a filter on I and F0 ⊆ F}.
Consider the partial order (F ,⊆). We will use Zorn’s Lemma to show that
there is a maximal filter U ∈ F , from which it will follow that F0 ⊆ U and
U is an ultrafilter extending F0 by Lemma 1 above.

In order to apply Zorn’s Lemma to the partial order (F ,⊆), we need to
show that every ⊆-increasing chain of filters over I has an upper bound in
(F ,⊆). Suppose C = {Fj | j ∈ J} is a chain of filters over the set I—
where (J,≤J) is some linearly ordered set. So j ≤ j′ implies Fj ⊆ Fj′ . Let
F =

⋃
j∈J Fj . Then clearly Fj ⊆ F for every Fj in the chain. In order to

show that F is an upper bound of the chain in the partial order (F ,⊆), we
need to show that F ∈ F , or in other words, that F is a filter on I and
F0 ⊆ F . It is clear that F0 ⊆ F so it will suffice to check the three filter
properties:

(1) ∅ /∈ F because ∅ /∈ Fj for every j ∈ J . Clearly I ∈ F .
(2) Suppose A,B ∈ F =

⋃
j∈J Fj . Then there are fixed j, j′ ∈ J so

that A ∈ Fj and B ∈ Fj′ . Since C forms a chain, it follows that
either Fj ⊆ Fj′ or that Fj′ ⊆ Fj . Without loss of generality, assume
Fj ⊆ Fj′ . Then A,B ∈ Fj′ and hence A ∩B ∈ Fj′ ⊆ F .

(3) Suppose A ∈ F and A ⊆ B ⊆ I. Then A ∈ Fj for some j ∈ J . Since
Fj is a filter it follows that B ∈ Fj ⊆ F .

Now, since every increasing chain in (F ,⊆) has an upper bound, it follows
from Zorn’s Lemma that in the partial ordering (F ,⊆), there is a maximal
filter U extending F0. By Lemma 1, U is an ultrafilter.

�
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Exercise 4. If F is the Frechét filter over a set X and U is an ultrafilter
with F ⊆ U then U is not principle.

5. Ultraproducts and  Loś’ Theorem

5.1. Introduction to Direct Products.

Consider the first-order structure N = 〈N, 0, 1,+, ·,≤〉. In this standard
structure, the symbols 0,+, ·,≤ are interpreted in the usual way: 0N = 0,
1N = 1, a+N b = a+ b, a ·N b = ab, a ≤N b ⇐⇒ a ≤ b.

There is a natural way of interpreting the symbols 0, 1,+, ·,≤ within the
cartesian product

N× N = {(n,m) | n,m ∈ N}.
Let us define a new first order structureM2 = 〈N×N, 0M, 1M,+M, ·M,≤M〉
as follows. Suppose (a, b), (c, d) ∈ N× N, then

• 0M2 = (0, 0) = (0N , 0N )
• 1M2 = (1, 1) = (1N , 1N )
• (a, b) +M2 (c, d) = (a+ c, b+ d) = (a+N c, b+N d)
• (a, b) ·M2 (c, d) = (ac, bd) = (a ·N c, b ·N d)
• (a, b) ≤M2 (c, d) ⇐⇒ a ≤N c and b ≤N d

How are the structures N = 〈N, 0, 1,+, ·,≤〉 and

M2 = 〈N× N, 0M2 , 1M2 ,+M2 , ·M2 ,≤M2〉
related? Do the structures satisfy the same first-order formulas?

Exercise 5. (a) Check that M2 satisfies the following sentence, but of
course N does not.

M2 |= ∃x∃y(x 6= 0 ∧ y 6= 0 ∧ x · y = 0)

(b) Find a first-order sentence involving only ≤ that is true inM2 but false
in N . (Hint: For example, M2 consider the elements that are less than or
equal to 1M2 = (1, 1).)

Remark 2. For n ∈ N we will use the symbol n as an abbreviation for the
term 1 + · · ·+ 1︸ ︷︷ ︸

n-times

in the language of arithmetic.

Exercise 6. Show that the structureM2 does not have “infinite” elements
in the sense that for every element (a, b) ∈ N × N of the domain of M2

there is a natural number k ∈ N such that M2 |= (a, b) ≤ k where kM2 =
(1 + · · ·+ 1︸ ︷︷ ︸

n-times

)M2 = (k, k).

We can also define a structuresM5 on N5 = N×N×N×N×N andMN
on NN = {f | f is a function f : N→ N}. One can just define the structure
M5 coordinate-wise as we did above for M2. For MN one can also use a
coordinate-wise interpretation by viewing the functions f ∈ NN as infinite
sequences of natural numbers f = (f(0), f(1), f(2), . . .). A similar technique
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allows one to define a natural structure in the language of arithmetic on the
set

N× Z× N× Z× N× · · ·
or even

· · · × N× Z× N× Z× N× · · · .
Also, notice that there is nothing special in the above discussion about the
language. This can all be carried our in any first-order language L.

5.2. Direct Products and Filters.

The next definition is general enough to handle all of the cases discussed
in the previous section.

Definition 11. Suppose I is a nonempty index set and {Mi | i ∈ I} is a
set of L-structures. The direct product of {Mi | i ∈ I} is an L structure
MI with domain

MI :=
∏
i∈I

Mi = {g | g is a function with dom(g) = I and g(i) ∈Mi}

such that

• if c is a constant symbol from L then cMI ∈ M is a function with
domain I such that cMI (i) = cMi ∈ Mi. (This defines a function g
with domain I such that g(i) = cMi ∈Mi.)
• if f is an n-ary function symbol from L then we define the inter-

pretation of f in MI to be the function fMI : Mn
I → MI defined

as follows. Given (g1, . . . , gn) ∈ MI , fMI (g1, . . . , gn) will be an ele-
ment of MI . We define the function fMI (g1, . . . , gn) with domain I
by fMI (g1, . . . , gn)(i) = fMi(g1(i), . . . , gn(i)) for i ∈ I.
• if R is a relation symbol from L then RMI (g1, . . . , gn) if and only if
RMi(g1(i), . . . , gn(i)) for each i ∈ I.

Exercise 7. LetMN denote the direct product of N-copies of the standard
structure N in the language of arithmetic. In other words,MN is the direct
product of the collection {Mi : i ∈ N} where Mi = N for every i ∈ N.
Show that this structure

MN = 〈NN, 0MN , 1MN ,+MN , ·MN ,≤MN〉

does have an “infinite” element in the sense that there is an element a ∈ NN

of the domain of the structure such that for every natural number k ∈ N we
have

MN |= ¬(a ≤ k) ∧ ¬(k ≤ a)

(Hint: Consider a = id : N → N the identity function, meaning id(n) = n
for every n ∈ N.)
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Before defining the general notion of “ultraproduct” of L-structures, let
me first discuss an example. Let MN = 〈NN, 0MN , 1MN ,+MN , ·MN ,≤MN〉,
where for example, 0MN = 〈0, 0, 0, . . .〉 and if a, b ∈ NN then

a+MN b = 〈a(0) + b(0), a(1) + b(1), a(2) + b(2), . . .〉
= 〈a(n) + b(n) | n ∈ N〉

Similarly, a ≤MN b if and only if for every n ∈ N we have a(n) ≤ b(n).
Let F be the tail filter on N discussed above in Example 12. For two

functions a, b ∈ NN define

a ∼F b ⇐⇒ {n ∈ N | a(n) = b(n)} ∈ F.
It is easy to see that ∼F is an equivalence relation on NN. Notice that a ∼F b
if and only if a and b are eventually equal as functions on N—i.e., there is a k
such that [k,∞) ⊆ {n ∈ N | a(n) = b(n)}. In other words, we are identifying
functions which are equal on a big set. Let [a]F = {b ∈ NN | b ∼F a} be

the equivalence class of a. Let NN/F = {[a]F | a ∈ NN} be the collection of
equivalence classes.

Let us define a new structureMN/F in the language containing the sym-
bols 0, 1,+, ·,≤. The domain ofMN/F is the collection of equivalence classes
NN/F where we interpret the symbols 0, 1,+, ·,≤ as follows

• 0MN/F = [(0, 0, 0, . . .)]F and 1MN /F = [〈1, 1, 1, . . .〉]F
• [a]F +MN/F [b]F = [〈a(0) + b(0), a(1) + b(1), . . .〉]F (add the repre-

sentative functions component-wise and then take the equivalence
class)

• [a]F ·MN/F [b]F = [〈a(0) · b(0), a(1) · b(1), . . .〉]F
• [a]F ≤MN/F [b]F if and only if {n ∈ N | a(n) ≤ b(n)} ∈ F

Notice that in particular, we are saying that [a]F ≤MN/F [b]F if and only if
the set on which the components of a are less or equal to the components of
b is big according to the filter F . Also notice that, for example, the above

definition of [a]F +MN /F [b]F does not depend on the choice of representatives
for the equivalence classes: Suppose a ∼F c and b ∼F d then we will show
that [a]F +MN/F [b]F = [c]F +MN/F [d]F . The set {n ∈ N | a(n) + b(n) =
c(n) + d(n)} is in the filter F because

{n | a(n) = c(n)} ∩ {n | b(n) = d(n)} ⊆ {n ∈ N | a(n) + b(n) = c(n) + d(n)}

and each of the sets {n | a(n) = c(n)} and {n | b(n) = d(n)} are in the filter
(since a ∼F c and b ∼F d). This shows that

[a]F +MN/F [b]F = [〈a(n) + b(n) | n ∈ N〉]F
= [〈c(n) + d(n) | n ∈ N〉]F
= [c]F +MN/F [d]F

This defines a structure

MN/F = 〈NN/F, 0MN/F , 1MN/F ,+MN/F , ·MN/F ,≤MN/F 〉
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Fact 1. There is an element [a]F ∈ MN/F such that for every natural
number k ∈ N we have

MN/F |= k ≤ [a]F .

Note that this element [a]F is an “infinite” element in a strong sense: it

is ≥ every “natural number” kMN/F . Whereas, in Exercise 7 we saw that
MN has an “infinite” element in the weaker sense that the element is ≤ any
natural number kMN .

Proof. Show that [id]F is the desired element where id : N → N is the
identity function defined by id(n) = n. �

Fact 2. There are sentences that are true in N = 〈N, 0, 1,+, ·,≤〉 but false
in MN/F . In particular,

N |= ∀x∀y(x · y = 0 =⇒ (x = 0 ∨ y = 0))

whereas

MN/F |= ∃x∃y(x 6= 0 ∧ y 6= 0 ∧ x · y = 0).

Remark 3. In what follows, we will show that if we use an “ultrafilter” U
instead of just a filter F to build MN/U , then a first-order sentence will be
true in MN/U if and only if it is true in N .

5.3. Ultraproducts.

LetMI =
∏

i∈IMi be the direct product of the collection of L-structures
{Mi | i ∈ I}, as defined above. Let U be an ultrafilter on I. Define a relation
∼U on M as follows. If a, b ∈ MI (so a and b are functions with domain I
as above) then

a ∼U b if and only if {i ∈ I | a(i) = b(i)} ∈ U .

In other words, a ∼U b if and only if a and b are equal on a “big” set (a set
in U).

Fact 3. ∼U is an equivalence relation on MI =
∏

i∈I Mi.

Now, if a ∈M =
∏

i∈I Mi, we let

[a]U := {b ∈M | b ∼U a} = {b ∈M | {i ∈ I | b(i) = a(i)} ∈ U}.

In other words, the functions a and b are in the same equivalence class if
they are equal on a big set.

Definition 12. The ultraproduct MI/U =
∏

i∈I Mi/U of a collection
{Mi | i ∈ I} of (nonempty) L-structures is the L-structure defined as follows

• The domain ofMI/U is the set MI/U := {[a]U | a ∈M =
∏

i∈I Mi}.
• Given a constant symbol c from L, set cMI/U = [〈cMi

i | i ∈ I〉]U (in

other words, cMI/U = [cMI ]U ).
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• Given an n-ary function symbol f from L, we define the interpreta-
tion of f inMI/U to be a function fMI/U : (MI/U)n →MI/U de-

fined by fMI/U ([a1]U , . . . , [an]U ) = [〈fMi(a1(i), . . . , an(i)) | i ∈ I〉]U
(in other words, fMI/U ([a1]U , . . . , [an]U ) = [fMI (a1, . . . , an)]U ).
• Given an n-place relation symbol R from L and [a1]U , . . . , [an]U ∈
MI/U , then RMI/U ([a1]U , . . . , [an]U ) if and only if

{i ∈ I | RMi(a1(i), . . . , an(i))} ∈ U.

Exercise 8. Show that the above definition of ultraproduct does not depend
on the choice of representatives of equivalence classes. Thus, the ultraprod-
uct MI/U =

∏
i∈IMi/U is well defined.

Definition 13. SupposeMI/U is the ultrapower of the L-structures {Mi |
i ∈ I} by an ultrafilter U over the set I. Suppose a1, . . . , an ∈ MI =∏

i∈I Mi, so each of a1, . . . , an is a function with domain I such that aj(i) ∈
Mi for 1 ≤ j ≤ n. Suppose ϕ is an L-formula with n free variables. We
define

‖ϕ[a1, . . . , an]‖ := {i ∈ I | Mi |= ϕ(a1(i), . . . , an(i))}.

Exercise 9. Use induction on complexity of terms to prove that if t is an
L-term and (a1, . . . , an) ∈Mn

I =
(∏

i∈IMi

)n
is a tuple then

tMI/U [[a1]U , . . . , [an]U ]︸ ︷︷ ︸
variable assignment

= [〈tMi [a1(i), . . . , an(i)] : i ∈ I〉]U . (5.1)

Theorem 1 ( Loś’ Theorem). Suppose that I is a nonempty set, {Mi | i ∈ I}
is a collection of L-structures, MI =

∏
i∈IMi is their direct product, and

U is an ultrafilter on I. Then, for every L-formula ϕ with n free variables
and every n-tuple (a1, . . . , an) ∈Mn

I we have

MI/U |= ϕ([a1]U , . . . , [an]U ) ⇐⇒ ‖ϕ[a1, . . . , an]‖ ∈ U

Proof. The proof is by induction on the complexity of formulas.
We now begin to prove Theorem 1 by induction on complexity of formulas.

Suppose ϕ is a term equation t1 = t2 and (a1, . . . , an) ∈ Mn
I is a matching

tuple. We have

MI/U |= t1 = t2 [[a1]U , . . . , [an]U ]

⇐⇒ t
MI/U
1 [[a1]U , . . . , [an]U ] = t

MI/U
2 [[a1]U , . . . , [an]U ]

⇐⇒ [〈tMi
1 [a1(i), . . . , an(i)] : i ∈ I〉]U = [〈tMi

2 [a1(i), . . . , an(i)] : i ∈ I〉]U
(by Exercise 9)

⇐⇒ {i ∈ I : tMi
1 [a1(i), . . . , an(i)] = tMi

2 [a1(i), . . . , an(i)]} ∈ U
(by definition of ∼U )

⇐⇒ {i ∈ I :Mi |= t1 = t2 [a1(i), . . . , an(i)]} ∈ U
⇐⇒ ‖t1 = t2[a1, . . . , an]‖ ∈ U
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Now suppose ϕ is a relational formula R(t1, . . . , t`) with matching tuple
(a1, . . . , an) ∈Mn

I . Then

MI/U |= R(t1, . . . , t`) [[a1]U , . . . , [an]U ]

⇐⇒ (t
MI/U
1 [[a1]U , . . . , [an]U ], . . . , t

MI/U
` [[a1]U , . . . , [an]U ]) ∈ RMI/U

⇐⇒ ([〈tMi
1 [a1(i), . . . , an(i)] : i ∈ I〉]U , . . . , [〈tMi

` [a1(i), . . . , an(i)] : i ∈ I〉]U ) ∈ RMI/U

⇐⇒ {i ∈ I : (tMi
1 [a1(i), . . . , an(i)], . . . , tMi

` [a1(i), . . . , an(i)]) ∈ RMi} ∈ U
⇐⇒ {i ∈ I :Mi |= R(t1, . . . , t`) [a1(i), . . . , an(i)]} ∈ U
⇐⇒ ‖R(t1, . . . , t`)[a1, . . . , an]‖ ∈ U

So, we have shown that the theorem holds for atomic formulas. Now
suppose the theorem is true for formulas ϕ1 and ϕ2, we need to show it’s
true for ϕ1 ∧ ϕ2. Let (a1, . . . , an) ∈Mn

I be a tuple matching the number of
free variables of ϕ1 ∧ ϕ2. We have

MI/U |= ϕ1 ∧ ϕ2[[a1]U , . . . , [an]U ]

⇐⇒ MI/U |= ϕ1[[a1]U , . . . , [an]U ] and MI/U |= ϕ2[[a1]U , . . . , [an]U ]
(by induction)

⇐⇒ ‖ϕ1[a1, . . . , an]‖ ∈ U and ‖ϕ2[a1, . . . , an]‖ ∈ U
⇐⇒ ‖ϕ1[a1, . . . , an]‖ ∩ ‖ϕ2[a1, . . . , an]‖ ∈ U

(because U is a filter)

⇐⇒ ‖ϕ1 ∧ ϕ2[a1, . . . , an]‖ ∈ U

Now suppose the theorem is true for a formula ϕ. We need to show
it’s true for ¬ϕ. (Note: this is where we are using that the filter U is an
ultrafilter.) Suppose (a1, . . . , an) ∈ Mn

I is a tuple matching the number of
free variables of ϕ. We have

MI/U |= ¬ϕ[[a1]U , . . . , [an]U ]

⇐⇒ it is not the case that MI/U |= ϕ[[a1]U , . . . , [an]U ]

⇐⇒ ‖ϕ[a1, . . . , an]‖ /∈ U
⇐⇒ I \ ‖ϕ[a1, . . . , an]‖ ∈ U (because U is an ultrafilter)

⇐⇒ ‖¬ϕ[a1, . . . , an]‖ ∈ U

Now suppose the theorem is true for ϕ(x, y1 . . . , yn). We must show the
theorem is true for ∃x ϕ(x, y1, . . . , yn). Suppose (a1, . . . , an) ∈ Mn

I . We
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have

MI/U |= ∃xϕ[[a1]U , . . . , [an]U ]

⇐⇒ there is a [b]U ∈MI/U with

MI/U |= ϕ[[b]U , [a1]U , . . . , [an]U ]

⇐⇒ there is a [b]U ∈MI/U with

‖ϕ[b, a1, . . . , an]‖ ∈ U (by induction)

⇐⇒ ‖∃xϕ[a1, . . . , an]‖ ∈ U

�

Exercise 10. Explain the last equivalence in the previous proof.

Definition 14. Suppose I is an infinite set, U is an ultrafilter on I, and for
each i ∈ I we have Mi =M. The ultrapower of M by U is defined to be
the L-structure

∏
Mi/U =MI/U . The domain of this structure is the set

of functions

M I = {f : such that f is a function from I to M}.

• If c is a constant symbol in L we define cM
I/U = [〈cMi : i ∈ I〉]U =

[〈cM : i ∈ I〉]U to be the equivalence class of the constant function
i 7→ cM.
• If f is an n-ary constant symbol and [a1]U , . . . , [an]U ∈ M I/U , we

define fM
I/U ([a1]U , . . . , [an]U ) = [〈fM(a1(i), . . . , an(i)) : i ∈ I〉]U .

• If R is an n-ary relation symbol and [a1]U , . . . , [an]U ∈M I/U define

([a1]U , . . . , [an]U ) ∈ RMI/U ⇐⇒ {i ∈ I : (a1(i), . . . , an(i)) ∈ RM} ∈ U

Example 14. Suppose U is a nonprinciple ultrafilter in N (extend the
tail filter). Let N be the standard model of arithmetic. By  Loś’ theorem,
if NN/U is the ultrapower of copies of N = 〈N, 0, 1,+, ·,≤〉 then MN/U
and N satisfy all of the same first order formulas, even though MN/U has
“infinite elements” in a strong sense.

Exercise 11. Suppose M is an L-structure and U is an ultrafilter over
some infinite set I. For each a ∈ M define ca : I → M to be the function
with domain I with constant value a: ca(i) = a for all i ∈ I. Use  Los’
Theorem to prove that the map e :M→MI/U defined by e(a) = [ca]U is
an elementary embedding.

6. Proof of the Compactness Theorem Using Ultraproducts

Theorem 2 (The Compactness Theorem). A set of L-sentences Σ has a
model if and only if every finite subset of Σ has a model.

Proof. (−→) This direction is trivial because if M |= Σ then M satisfies
every finite subset of Σ.
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(←−) Suppose every finite subset of Σ has a model. Let I be the collection
of all finite subsets of Σ. For each i ∈ I let Mi |= i. For each i ∈ I let
i∗ := {j ∈ I | i ⊆ j}. It is easy to see that the set I∗ := {i∗ | i ∈ I} has the
finite intersection property because if i∗0, i

∗
1 ∈ I∗ then i∗0∩ i∗1 = (i0∪ i1)∗ 6= ∅.

By Proposition 2, it follows that there is an ultrafilter U over I with I∗ ⊆ U .
Let MI :=

∏
i∈IMi be the product of the L-structures {Mi | i ∈ I}

and letMI/U :=
∏

i∈IMi/U denote the ultraproduct associated to U . We
will show that MI/U |= Σ. Choose a sentence ϕ ∈ Σ. Then {ϕ} ∈ I and
Mi |= ϕ for all i with ϕ ∈ i. In other words

{ϕ}∗ = {i ∈ I | ϕ ∈ i} ⊆ {i ∈ I | Mi |= ϕ}.
Since {ϕ}∗ ∈ I∗ and U was chosen so that I∗ ⊆ U , it follows that {ϕ}∗ ∈ U .
Then filter axiom (3) implies that {i ∈ I | Mi |= ϕ} ∈ U . Finally,  Loś’
Theorem implies MI/U |= ϕ. Since ϕ was a arbitrary element of Σ, we see
that MU |= Σ, as desired. �

The next important theorem follows from the compactness theorem and
has many interesting applications. For example, it immediately implies that
there are structures which satisfy all of the same first-order statements as
the natural numbers 〈N, 0, 1,+, · ≤〉 but which are uncountable, and indeed,
of any cardinality.

Theorem 3 (The Löwenheim-Skolem Theorem). If a collection of L-formulas
Σ has arbitrarily large finite models or an infinite model, then Σ has models
of arbitrarily large cardinality.

Proof. For any given set C of new constant symbols (meaning constant sym-
bols not already in L), we are going to find a model of Σ of cardinality at
least the cardinality of C.

Consider the following set of L(C)-sentences.

ΣC = Σ ∪ {c 6= c′ | c, c′ ∈ C and c 6= c′}
Since Σ has arbitrarily large finite models or an infinite model, every finite
subset Σ0 ⊆ Σ has a model, because in any sufficiently large structure we
can find pairwise distinct interpretations for the finitely many c occuring in
Σ0. Thus the compactness theorem yields a model of ΣC . Its L-reduct is
then a model of Σ of cardinality at least |C|. �

7. Types

Given an L-structure M and a subset A ⊆ M , we define an expanded
language LA = L ∪ A where we view the elements of A as new constant
symbols. We define a new structure (M, A) in the expanded language as
follows. The new structure interprets the symbols of L in exactly the same
way that M does: c(M,A) = cM, f (M,A) = fM and R(M,A) = RM. The
new structure interprets the new constant symbols in the obvious way: if
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a ∈ A is a new constant in the language LA we define a(M,A) = a. For
example, using this notation, the elementary diagram of the L-structureM
is precisely the theory of the LM -structure (M,M):

diagel(M) = Th(M,M)

= “the set of all LM -sentences true in (M,M)”

If ϕ(x1, . . . , xn) is an L-formula and (a1, . . . , an) is a tuple from M , we can
define and LM sentence ϕ(a1, . . . , an) by induction on the complexity of ϕ in
the obvious way so that the following fact is true. For example if ϕ(x1, x2)
is the L-formula x1 = x2 then ϕ(a1, a2) is the LM sentence a1 = a2.

Fact 4. IfM is an L-structure, ϕ(x̄) is an L-formula where x̄ = (x1, . . . , xn),
and ā = (a1, . . . , an) is a matching tuple from M then

M |= ϕ[a1, . . . , an]︸ ︷︷ ︸
varphiable assignment

⇐⇒ (M,M) |= ϕ(a1, . . . , an)︸ ︷︷ ︸
an LM -formula

.

Example 15. Suppose N = (N, 0, 1,+, ·, <) is the standard model in the
language L of arithmetic. Then in the language LN = L ∪ N we have
constants for every element of the domain, and expressions of the form
(3+1 = 4)∧(5 < 17) are LN-sentences. We can also write an equivalent form
of the above expression in the smaller language L: (3 + 1) = 4) ∧ (5 < 17).

Remark 4. In what follows, if M is an L-structure and ā = (a1, . . . , an) ∈
Mn is a tuple matching an L-formula ϕ, when we write M |= ϕ(ā) we will
mean (M,M) |= ϕ(ā) (or equivalently M |= ϕ(x̄)[ā]).

LetM be an L-structure, suppose A ⊆M and let b̄ = (b1, . . . , bn) ∈Mn.
The complete type of b̄ over A (with respect to M in the variables
x̄ = (x1, . . . , xn)) is defined to be following collection of LA-formulas.

tpM(b̄/A) = {ϕ(x̄, ā) : ā ∈ Ak for some k and M |= ϕ(b̄, ā)}
= {ϕ(x̄) : ϕ(x̄) is an LA-formula and M |= ϕ(b̄)}

In other words, the complete type of b̄ over A is the collection of all matching
formulas with parameters from A that are true about b̄ in M. We say that
a set of LA-formulas p(x̄) is a complete type over A (with respect to
M in the variables x̄) if it is the complete type of some tuple b̄ over A
with respect to some elementary extension of M. In other words, p(x̄) is a
complete type over A if there is an elementary extension N < M and a
tuple b̄ from N such that p(x̄) = tpN (b̄/A).

A subset Φ(x̄) ⊆ p(x̄) of a complete type over A is called a type over A
(with respect to M in the variables x̄ = (x1, . . . , xn)). We say that a type
Φ(x̄) over A is realized by a tuple b̄ in M if Φ(x̄) ⊆ tpM(b̄/A); or, in other
words, M |= Φ(b̄) (which means (M,M) |= ϕ(b̄) for each ϕ(x̄) ∈ Φ(x̄)). A
type Φ(x̄) is finitely realized in M if for every finite subset Ψ(x̄) ⊆ Φ(x̄)
there is a tuple b̄ from M such that for every ψ(x̄) ∈ Ψ(x̄) we have M |=
ψ(b̄).
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Example 16.

(1) If M is an infinite L-structure then {x 6= a : a ∈ M} is a 1-type of
M that is realized in an elementary extension N ofM, precisely by
those elements that are not in M.

(2) {n < x : n ∈ N} is a 1-type over N of the standard model of arith-
metic N = (N, 0, 1,+, ·, <). Note, here n really means n and not
n = 1 + · · ·+ 1. It is the case that {n < x : n ∈ N} is a type over ∅
of the standard model of arithmetic.

(3) Every Dedekind cut in can be viewed as a 1-type of (Q, <).

Theorem 4. LetM be an L-structure, A ⊆M a set of parameters, Φ(x1, . . . , xn)
a set of formulas of L with parameters from A. Then, writing x̄ for (x1, . . . , xn),

(a) Φ(x̄) is a type over A with respect to M if and only if Φ is finitely
realized in M.

(b) Φ(x̄) is a complete type over A with respect toM if and only if Φ(x̄)
is a set of formulas of L with parameters from A, which is maximal
with the property that it is finitely realized in M.

In particular, if Φ is finitely realized in M, then it can be extended to a
complete type over A with respect to M.

Proof. (a) (−→) Suppose Φ(x̄) is a type over A with respect to M. Then
by definition Φ(x̄) is a subset of the complete type of some matching tuple
from an elementary extension of M. So there is an elementary extension
N < M and a matching tuple b̄ from N with N |= Φ(b̄). If Ψ is a finite
subset of Φ then N |=

∧
Ψ(b̄) and hence N |= ∃x̄

∧
Ψ(x̄). SinceM 4 N we

haveM |= ∃x̄
∧

Ψ(x̄), and thus there is a tuple ā fromM withM |= Ψ(ā).
Thus Ψ(x̄) is finitely realized in M. (←−) Suppose Φ(x̄) is finitely realized
in M. We must show that Φ(x̄) is realized in some elementary extension of
M. Recall that diagel(M) is the collection of all LM -formulas true in M.
Let c̄ = (c1, . . . , cn) be a tuple of new constants matching Φ(x̄). One can
use the compactness theorem to prove that diagel(M) ∪ Φ(c̄) is consistent.
Thus there is an LM ∪ {c1, . . . , cn} model N |= diagel(M) ∪ Φ(c̄), and an
elementary embedding e : M → N � L. Without loss of generality we can
assumeM 4 N � L. Let b̄ = c̄N and notice that N |= Φ(b̄) since N |= Φ(c̄).
Thus Φ is realized in an elementary extension ofM, and so Φ is a type over
A with respect to M .

(b) (−→) Suppose Φ(x̄) is a complete type over A with respect to M.
This means that Φ(x̄) is the complete type some tuple b̄ in some elementary
extension N < M; in other words, Φ(x̄) = tpN (b̄/A). Since every LA-
formula is either true or false about b̄ in N , it follows that for every LA

formula ϕ(x̄) either ϕ ∈ Φ or ¬ϕ ∈ Φ. This implies that Φ(x̄) is a maximal
type over A. (←−) Suppose Φ(x̄) is a maximal type over A. It follows that
Φ(x̄) is a realized by some tuple b̄ is some elementary extension N < M.
We have Φ(x̄) ⊆ tpN (b̄/A), and since Φ(x̄) is a maximal type over A we
must have Φ(x̄) = tpN (b̄/A), thus Φ is a complete type over A. �
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Lemma 2. Suppose A ⊆ M,N and e : M → N is an isomorphism fixing
A (i.e. e(a) = a for every a ∈ A). If Φ is a type of M over A, then Φ is
also a type of N over A. Furthermore, if ā is a matching tuple from M then
M |= Φ(ā) if and only if N |= Φ(e[ā]).

Proof. Recall that isomorphisms are elementary embeddings.
Suppose Φ is a type of M over A. Then by the previous theorem, this

means that Φ is finitely realized inM. We must show that Φ is also finitely
realized in N . Suppose Ψ(x̄) ⊆ Φ(x̄) is finite. Then there is a tuple b̄
from M such that M |=

∧
Ψ(b̄). By the elementarily of e, it follows that

N |=
∧

Ψ(e[b̄]).
The rest follows by elementarily of e.

�

8. Saturation of ultraproducts and the Keisler-Shelah
Theorem

Definition 15. An L-structure M is κ-saturated if it realizes all of its
1-types over subsets A ⊆ M with |A| < κ. The structure M is called
saturated if it is |M |-saturated.

Example 17.

(1) Every finite structure is saturated (and even κ-saturated for all κ).
This is simply because finite structures do not have proper elemen-
tary extensions.

(2) A countable structure M is saturated if and only if M realizes all
of its 1-types having only finitely many parameters.

(3) If M is a countable structure then M is not ω1-saturated.

Fact 5. Suppose M and N are L-structures and f : M → N . Then f is
an elementary embedding if and only if (M,M) ≡ (N , f [M ]). Note: here

(N , f [M ]) is the LM -structure in which if a ∈M then a(N ,f [M ]) = f(a).

Theorem 5. Let M be a countably infinite saturated L-structure.

(1) (Universality) Every countable N ≡ M can be elementarily embed-
ded in M.

(2) (Uniqueness) If N ≡M is countable and saturated, then N ∼=M.
(3) (Homogeneity) Suppose A is a finite subset of M and ā and b̄ are

tuples of the same length from M . Then tpM(ā/A) = tpM(b̄/A) if
and only if there is a σ ∈ AutA(M) such that σ[ā] = b̄.

Proof. (Sketch) (1) Suppose N = {bi : i ∈ N} is an enumeration of N . By
induction on i we choose ai ∈M such that (N , b0, . . . , bn) ≡ (M, a1, . . . , an)
for all n ∈ N. Then we define e(bi) = ai to obtain the desired map. Sup-
pose (as the inductive hypothesis) that ā = (a0, . . . , an−1) has already been
chosen so that (M, ā) ≡ (N , b̄) where b̄ = (b0, . . . , bn−1).

Let Φn = {ψ(x, b̄) : ψ(x, b̄) ∈ tpN (bn/b̄)}. This set is closed under finite
conjunctions, as so is tpN (bn/b̄). Furthermore, since N |= ∃xψ(x, b̄) for all
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ψ(x, b̄) ∈ tpN (bn/b̄), the induction hypothesis gives M |= ∃xψ(x, ā), thus
Φn is a type by Theorem 4.

As M is saturated, Φn is realized in M by some an. Consequently
(M, a0, . . . , an) ≡ (N , b0, . . . , bn), and we define e(bn) = an.

By induction, this defines a map e : N → M , which is an elementary
embedding.

(2) Suppose N is also saturated and N = {bi : i ∈ N}. Use back-and-forth
to inductively construct an isomorphism.

(3) Exercise.
�

Remark 5. Recall that by definition, an L-structure M is ω1-saturated if
and only if M realizes all of its 1-types over subsets A ⊆M with |A| = N.

Theorem 6. Suppose I = N and let U be a non principle ultrafilter over I.
If L is a countable language and {Mi : i ∈ I} is a collection of L-structures,
then the ultraproduct MI/U =

∏
i∈IMi/U is ω1-saturated.

Proof. To show that the ultraproductMI/U is ω1-saturated, we must show
that every type over a countable subset of the domain is realized in the
ultraproduct MI/U . By Theorem 4(a), this amounts to showing that if
Φ(x) is a set of LA-formulas for some countable A ⊆ MI/U and if Φ(x) is
finitely realized in MI/U , then Φ(x) is realized in MI/U .

Since the language LA is countable, we can let Φ(x) = {ϕn(x) : n ∈ N}
be an enumeration of Φ(x). Let us fix a countable descending sequence of
elements of U

I = I0 ⊇ I2 ⊇ I3 ⊇ · · ·
such that

⋂
n∈N In = ∅ (for example we could take In = [n,∞) ∩ N). Now

for each n ≥ 1 define

Xn := In ∩ {i ∈ I :Mi |= ∃x(ϕ1(x) ∧ · · · ∧ ϕn(x))}.

We have Xn ⊇ Xn+1 for each n ≥ 1 and furthermore,
⋂

n≥1Xn = ∅. Since

Φ(x) is finitely realized in MI/U we have {i ∈ I : Mi |= ∃x(ϕ1(x) ∧ · · · ∧
ϕn(x))} ∈ U , and thus Xn ∈ U for n ≥ 1.

Since
⋂

n≥1Xn = ∅, for each i ∈
⋃

n≥1Xn there is a largest natural

number n(i) such that i ∈ Xn(i). For i /∈
⋃

n≥1Xn define n(i) = 0. Now we

define an element f ∈
∏

i∈I Mi as follows, with aim to show that MI/U |=
Φ([f ]U ). If i ∈

⋃
n≥1Xn we choose f(i) ∈Mi such thatMi |= ϕ1(f(i))∧· · ·∧

ϕn(i)(f(i)). If i /∈
⋃

n≥1Xn we let f(i) be any element of Mi. Since Φ(x) =

{ϕn(x) : n ∈ N}, to show that MI/U |= Φ([f ]U ) we suppose ϕn(x) ∈ Φ(x)
and show that Xn ⊆ {i ∈ I : Mi |= ϕn(f(i))} ∈ U . Suppose i ∈ Xn, then
n ≤ n(i) and so i ∈ Xn(i), which implies Mi |= ϕ1(f(i)) ∧ · · · ∧ ϕn(f(i)),
and hence Mi |= ϕn(f(i)). Thus {i ∈ I :Mi |= ϕn(f(i))} ∈ U and by  Los’
Theorem we have MI/U |= ϕn([f ]U ).

�



ULTRAPRODUCTS, THE COMPACTNESS THEOREM AND APPLICATIONS 21

We will need some basic set-theoretic facts and terminology to continue
our discussion of saturation.

If X and Y are sets then YX denotes the collection of all functions from
Y to X. If Y is a set then Y 2 denotes the set of all 0-1-valued functions with
domain Y . Note that there is clearly a bijection from the powerset of Y ,
P (Y ), to the set Y 2: just map a subset of Y to its characteristic function.

Examples 1.

• N2 denotes the set of all sequences of 0’s and 1’s.
• Similarly, N×N2 denotes the set of all 0-1-valued functions with do-

main N×N—each such function can be visualized as an infinite grid
of 0’s and 1’s.
• The set N(N2) denotes the set of all sequences of sequences of 0’s and

1’s.

Fact 6. |N(N2)| = |N×N2| = |N2|
Proof. For the first equality, there is a bijection f :N×N 2 → N(N2). Given
an infinite grid of 0’s and 1’s, G ∈ N×N2, we define f(G) = 〈~an : n ∈ N〉 to
be a sequence of sequences of 0’s and 1’s by letting ~an be the nth-column of
the grid.

For the second equality, just use the fact that |N × N| = N (the product
of two countable sets is countable). �

We denote the least infinite cardinal by ω, and in fact ω = N. The least
uncountable cardinal is denoted by ω1 (there is no bijection from ω to ω1).
The continuum hypothesis (CH) states that |P (N)| = ω1, or equivalently
|N2| = ω1.

Lemma 3. If M and N are saturated models of the same cardinality then
M∼= N . (Similar to Theorem 5(2).)

Lemma 4. If (M, ā) ≡ (N , b̄) and ā covers M and b̄ covers N , then M∼=
N .

Theorem 7. (Keisler-Shelah) Assume that 2ω = ω1. Suppose L is a count-
able language and let M and N be L-structures of cardinality at most ω1.
Then M ≡ N if and only if there is some ultrafilter U over N such that
MN/U ∼= NN/U .

Proof. (←−) Suppose MN/U ∼= NN/U , then by  Los’ Theorem we have
M≡MN/U ∼= NN/U ≡ N .

(−→) LetM andN be L-structures with |M |, |N | ≤ ω1. SupposeM≡ N
and let U be a nonprinciple ultrafilter over N. By Theorem 6, the structures
MN/U and NN/U are both ω1-saturated. Since each equivalence class in
MN/U is represented by a function (or sequence) in the cartesian product∏

i∈NM , we have∣∣∣MN/U
∣∣∣ ≤ ∣∣∣∣∣∏

i∈N
M

∣∣∣∣∣ ≤ |NM | = |N(N2)| = |N×N2| = |N2| = |P (N)| = ω1
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Similarly, |NN/U | ≤ ω1. Since both MN/U and NN/U are ω1-saturated,
neither can have cardinality ω, thus the domains of both ultrapowers must
have cardinality precisely ω1. By the uniqueness of saturated models in a
given cardinality, e.g. Lemma 3, it follows that MN/U ∼= NN/U .

�
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